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We present a numerical model of the axisymmetric flow of an initially spherical capsule
in a co-axial cylindrical tube. The capsule consists of a liquid droplet enclosed by a
thin hyper-elastic membrane that is assumed to obey different membrane constitutive
equations such as Mooney–Rivlin, Skalak et al. (1973) or Evans & Skalak (1980) laws.
It is further assumed that the capsule may be subjected to some isotropic pre-stress
due to initial swelling. We compute the steady flow of the capsule inside the tube
as a function of the size ratio between the capsule and tube radii, the amount of
pre-swelling and the membrane constitutive law. We thus determine the deformed
profile geometry and specifically the onset of the curvature inversion at the back of
the particle. We show that for a given size ratio, the critical flow rate at which the back
curvature changes is strongly dependent on pre-inflation. The elastic tension level in
the membrane as well as the additional pressure drop created by the presence of the
particle are also computed. The numerical results are then compared to experimental
observations of capsules with alginate membranes as they flow in small tubes (Risso
et al. 2006). It is found that the experimental capsules were probably pre-inflated by
about 3% and that their membrane is best modelled by the Skalak et al. law.

1. Introduction
A simple capsule consists of a liquid droplet surrounded by a thin membrane that

controls exchanges between the environment and the capsule’s internal contents and
has thus a protection role. Such particles may be considered as models of simple cells
such as red blood cells, but they are also found in many industrial applications where
a substance has to be protected until ready to be used. For example, there are capsules
in a number of common products such as pesticides, inks, and cosmetics. They are
also used for bioengineering applications like drug targeting or cell encapsulation
(Kühtreiber, Lanza & Chick 1998). In most situations, capsules are suspended in
another liquid and are thus subjected to hydrodynamic forces when the suspension
is flowing. The motion of the suspending and internal liquids creates a viscous
deformation and may lead to breakup. The control of this process is essential for the
design of artificial capsules and a number of studies have been published over the
years on this topic.

Most models consider the simple prototypical case of a capsule consisting of a
Newtonian incompressible liquid droplet surrounded by an infinitely thin membrane
that can be treated as a two-dimensional elastic surface with known mechanical
properties. Thus, the deformation of an initially spherical capsule freely suspended in
a shear flow has been computed as a function of shear rate when the membrane obeys
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a neo-Hookean type of law (e.g. Li, Barthès-Biesel & Helmy 1988; Ramanujan &
Pozrikidis 1998; Eggleton & Popel 1998; Diaz, Pelekasis & Barthès-Biesel 2000; Lac
et al. 2004). Area-incompressible membranes have been considered to model the
behaviour of red blood cells or lipid vesicles (e.g. Kraus et al. 1996; Ramanujan &
Pozrikidis 1998; Eggleton & Popel 1998). The bending rigidity of the membrane has
also been taken into account (Kraus et al. 1996; Kwak & Pozrikidis 1998). Lac et al.
(2004) compared different membrane laws where the shear and area dilation modulus
were of the same order of magnitude. They find that the elastic constitutive law of
the membrane significantly affects the overall deformation of a capsule subjected to
an unbounded shear flow. In particular, they show that at shear rates lower than
some critical value, the capsule reaches an equilibrium deformed state that is unstable
owing to the presence of negative principal tensions that cause membrane buckling.
They also find that for shear rates larger than another critical value, no equilibrium
can be obtained and breakup would be assumed to occur. All the above studies
assume that the initial capsule shape is unstressed.

Another situation of interest that has not been studied much is where the external
flow is bounded. This occurs when the capsule is forced to flow into a small pore
with cross-section dimensions of the same order as its own. This configuration is
found in blood microcirculation, in filtration or in transport of a capsule suspension
in microchannels. For example, the flow of red blood cells in microvessels has been
modelled for centred or off-centred cells (Secomb 1995). Then the ‘capsule’ is not
initially spherical (discocyte shape) and its deformation is strongly dependent on the
membrane being area incompressible. The case of initially spherical capsules enclosed
by a neo-Hookean membrane flowing through cylindrical pores has been considered
by Quéguiner & Barthès-Biesel (1997) who showed that the capsule takes a steady
parachute shape when its radius is smaller than or equal to the pore radius. When its
radius is larger than the pore’s, the capsule takes a slug shape. These results have been
completed by Diaz & Barthès-Biesel (2002) who considered different constitutive laws
for the membrane and different initial capsule geometries, as measured by a sphericity
index. They showed that, at high flow strength, the membrane constitutive law and
the surface to volume ratio have a measurable influence on the geometry of the
final deformed parachute shape and on the additional pressure drop created by the
capsule. They also studied the influence of the viscosity ratio between the internal
and external liquids on the transient entrance phase and showed that increasing the
capsule internal viscosity led to larger pressure peaks during entrance. The case of
an axisymmetric file of red blood cells has also been considered by Pozrikidis (2005),
who studied the influence of the cell to vessel radius ratio and of cell spacing on the
dynamics of the suspension.

Recently, Risso, Collé-Paillot & Zagzoule (2006) reported a thorough experimental
study of the flow in a cylindrical pore of initially spherical capsules with a membrane
made of alginate covalently linked to human serum albumin (HSA). The capsule
membrane elastic properties were measured by means of compression experiments
(Carin et al. 2003; Risso & Carin 2004) and the steady capsule profile in the tube was
recorded with a video camera as a function of flow strength and size ratio between the
capsule and the tube. A comparison of the experimental profiles and those predicted
by Quéguiner & Barthès-Biesel (1997) showed that the agreement was not very good,
and that the numerical deformation was larger than the measured one.

However, a previous experimental study of the same capsules (Sherwood et al. 2003)
had shown that they were prone to osmotic effects owing to the presence of large poly-
electrolytes in the internal liquid due to partial dissolution of the membrane material.
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Figure 1. Capsule flowing into a channel consisting of an hyperbolic entrance followed by a
cylindrical tube.

Thus one is led to suspect that in Risso et al.’s (2006) experiments, the capsules may
have been subjected to internal pre-stress due to uncontrolled osmotic phenomena.
Such pre-stress can have a significant effect on the deformation of capsules subjected
to flow as was recently reported by Lac & Barthès-Biesel (2005) in the case of an
unbounded simple shear flow. In particular, they showed that pre-stress could remove
the membrane buckling instability observed for low flow strength (Lac et al. 2004)
and that it lowered the capsule deformation for a given shear rate.

Since membrane pre-stress is important in determining the motion of capsules in
unbounded shear flow, it should be equally important for pore flow. This paper thus
presents a study of the effect of pre-stress on the motion of an initially spherical
capsule in a cylindrical pore. We first consider the case where the capsule membrane
satisfies the Skalak et al. (1973) constitutive law with comparable values of the shear
and area dilation modulus, and study the influence of flow strength, membrane pre-
stress and size ratio between the capsule and the tube on the steady deformed state
of the capsule. We then compare the numerical shapes to those measured by Risso
et al. (2006) and show the existence of a probable pre-swelling of the experimental
capsules. Other membrane constitutive laws are then considered and we show that
the best fit with experiments is obtained with the Skalak et al. (1973) law when large
deformations are achieved.

2. Problem statement
2.1. Flow problem

The flow situation is identical to the one studied by Quéguiner & Barthès-Biesel (1997)
and by Diaz & Barthès-Biesel (2002) and will be only summarised in the following.
We consider an axisymmetric situation where the channel and the capsule have the
same axis of revolution Ox. The channel consists of an axisymmetric hyperbolic
entrance extended at the hyperboloid apex by a cylindrical part (denoted ‘tube’) of
radius R and axis Ox, where O is located at the beginning of the cylinder (figure 1).
The opening of the entrance (defined by the angle between Ox and the hyperbola
asymptote) has no influence on the steady capsule motion in the cylindrical part and
only determines the transient flow of the particle into the tube. The channel is filled
with an incompressible Newtonian liquid of viscosity µ(1) flowing with flow rate Q.
The flow Reynolds number is assumed to be very small and the axisymmetric velocity
field in the absence of a particle is denoted v∞. The capsule is initially spherical
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with radius a. It is filled with a Newtonian incompressible liquid with viscosity
µ(2) and enclosed by an infinitely thin hyperelastic membrane with surface shear
elastic modulus Gs and area dilation modulus Ks . Buoyancy forces are neglected and
consequently, when the capsule is centred on Ox, it takes an axisymmetric deformed
shape and remains centred. The position of the capsule centre of mass on Ox is
denoted x(M) = x(M)ex where ex is the axis unit vector. The unit normal vector n to all
the boundaries points into the suspending liquid.

The internal and external liquid motion satisfies the Stokes equations:

∇ · σ (β) = 0, ∇ · v(β) = 0, (2.1)

σ (β) = −p(β)I + µ(β)
(
∇v(β) +

(
∇v(β)

)T )
, (2.2)

where v(β), σ (β) and p(β) denote the velocity, stress and pressure fields in the suspending
(β =1) and internal (β = 2) liquids.

The associated boundary conditions are:
no flow disturbance far from the capsule

v(1)(x, t) → v∞(x),
∣∣x − x(M)

∣∣ � R; (2.3)

no slip on the channel wall (W )

v(1)(x, t) = 0, x ∈ W ; (2.4)

no slip on the capsule deformed surface (M)

v(1)(x, t) = v(2)(x, t) =
∂

∂t
x(X, t), x ∈ M, (2.5)

where X denotes the initial position of a membrane material point located at position
x at time t;
the load � f on the membrane is due to the viscous traction jump(

σ (1) − σ (2)
)

· n + � f = 0, x ∈ M, (2.6)

where n is the outer unit normal vector to M .

2.2. Capsule membrane mechanics

It remains to relate the load � f to the capsule deformation. A detailed discussion of
membrane mechanics is given by Pozrikidis (2003a, b), or by Barthès-Biesel, Diaz &
Dhenin (2002) and Barthès-Biesel (2003). We assume that the membrane is made of
an infinitely thin sheet of a hyperelastic material with in-plane isotropy.

2.2.1. Membrane deformation

Then, under axisymmetric load conditions, the deformation and elastic tension
tensors are both axisymmetric with common principal directions along the meridian
(index 1) and parallel (index 2) curves. We use cylindrical coordinates (x, r) and define
the deformed position of a membrane material point by (s, r) (respectively (ξ, ρ) in
the initial state), where s (respectively ξ ) is the arc length measured along a meridian
curve with s = 0 (respectively ξ = 0) at the downstream intersection of the meridian
with Ox (figure 1). The principal elongation ratios λ1 and λ2 are given by

λ1 =
ds

dξ
, λ2 =

r

ρ
, (2.7)
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and the principal curvatures C1 and C2 by

C1 = −dτ

ds
· n, C2 =

nr

r
, (2.8)

where τ is the unit tangent vector to the meridian oriented along increasing s and nr

is the radial component of n.

2.2.2. Membrane constitutive law

The membrane constitutive law relates the tensions to the deformations. A number
of laws have been proposed to model thin membranes, but we consider only the
simplest ones with constant material coefficients. One candidate is the Mooney–
Rivlin law (MR) that models an infinitely thin sheet of a three-dimensional isotropic
volume-incompressible material:

T1 =
Gs

λ1λ2

[
λ2

1 − 1

(λ1λ2)2

] [
Ψ + λ2

2(1 − Ψ )
]
, (2.9)

where the parameter Ψ varies between 0 and 1. The value Ψ =1 corresponds to a
neo-Hookean material, while Ψ = 0 corresponds to the so-called extreme Mooney–
Rivlin material. The area dilation modulus Ks is then equal to 3Gs (Barthès-Biesel
et al. 2002).

Another approach consists of treating the membrane as a two-dimensional
continuum with in-plane isotropy. Correspondingly, starting from general principles
of elasticity and thermodynamics, Skalak et al. (1973) derived the following law (Sk):

T1 =
Gs

λ1λ2

[
λ2

1

(
λ2

1 − 1
)

+ C(λ1λ2)
2[(λ1λ2)

2 − 1]
]
, (2.10)

where the relation between the surface shear elastic modulus Gs and the area dilation
modulus Ks depends on the dimensionless parameter C:

Ks = Gs(1 + 2C). (2.11)

This law was later simplified by Evans & Skalak (1980) (ES) who proposed adding
linearly and independently the contributions of shear and area dilation:

T1 = Gs

[
1

2λ2
1λ

2
2

(
λ2

1 − λ2
2

)
+ A(λ1λ2 − 1)

]
, (2.12)

where the area dilation modulus is simply proportional to the shear modulus:

Ks = AGs. (2.13)

In all three laws, the expression for T2 is obtained by interchanging the roles of indices
1 and 2.

The Sk and ES laws were initially designed to model the area-incompressible
membrane of biological cells such as red blood cells, corresponding to C � 1 or
A � 1. However, those laws are very general and can also be used to model other
types of membranes for which Ks and Gs are of the same order of magnitude, as is
the case for alginate membranes (Carin et al. 2003).

When C =1 and A= 3, the MR, Sk and ES laws predict the same small deformation
of the membrane with Ks = 3Gs . However, they lead to different nonlinear tension–
strain relations under large deformations. In particular, it is easily checked that
the MR and ES laws are strain-softening under uniaxial stretching (T1 �=0, T2 = 0),
whereas the Sk law is strain-hardening (Barthès-Biesel et al. 2002). These three laws
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(2.9), (2.10), (2.12) have been used to analyse compression experiments performed on
capsules with alginate membranes (Carin et al. 2003). The technique consists of placing
a capsule between two parallel plates and measuring simultaneously the distance
between the plates and the applied force. Large reversible elastic deformations are
achieved, and the membrane elastic parameters are obtained by means of an inverse
analysis of the compression experiment. It is found that for freshly prepared capsules
with thin membranes (with thickness less than 5% of the radius), the MR law with
Ψ = 0 or Sk and ES laws with Ks = Gs could all be used to fit the experimental
compression data with good precision, whereas the commonly used neo-Hookean
law (i.e. MR with Ψ = 1) could not (Carin et al. 2003; Risso & Carin 2004; Rachik
et al. 2006). However, for capsules that had been stored for over six months in saline
solution, Risso & Carin (2004) find that the ES law gives better fit with the data than
the Sk or MR laws.

It is clear that a single experiment, such as compression between plates, is not
sufficient to determine unambiguously the constitutive law for the membrane. It will
thus be of interest to apply a similar inverse analysis to the flow of a capsule in a
tube, and try to deduce a membrane constitutive law from the analysis of the capsule
motion and deformation as a function of flow strength.

2.2.3. Membrane equilibrium equations

Diaz & Barthès-Biesel (2002) observed a tendency towards buckling of the
downstream part of the membrane under certain flow conditions, particularly during
the entrance phase into the tube. To solve this problem, they assumed that the
membrane had a small bending rigidity and that the principal bending moments m1

and m2 depended linearly on the local curvature change (Pozrikidis 2003b):

m1 =
Bs

λ2

[
λ1C1 − C0

1 + νs

(
λ2C2 − C0

2

)]
, (2.14)

where Bs is the bending modulus, C0
1 and C0

2 are the principal initial curvatures and
where νs depends on the membrane constitutive law and is equal to 1/2, C/(C + 1)
or (A − 1)/(A + 1) for the MR, Sk or ES laws, respectively. The expression for m2 is
obtained by interchanging indices 1 and 2. The axisymmetric membrane equilibrium
equations are then given by:

� f · τ =
dT1

ds
+

1

r

dr

ds
(T1 − T2) − C1

[
1

r

dr

ds
m2 − 1

r

d

ds
(rm1)

]
, (2.15)

� f · n = −C1T1 − C2T2 − 1

r

d

ds

[
dr

ds
m2 − d

ds
(rm1)

]
, (2.16)

where � f is the viscous traction jump defined in (2.6).

2.2.4. Pre-stress

Following Lac & Barthès-Biesel (2005), we further assume that the capsule is
subjected to a positive osmotic pressure difference p(0) between the internal and
external phases. Consequently, since the capsule is spherical, the membrane is pre-
stressed by an isotropic elastic tension T (0) given by the Laplace law:

T1 = T2 = T (0) =
ap(0)

2
, (2.17)
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where a is the radius of the inflated capsule. The membrane is thus stretched with an
initial elongation λ(0):

λ1 = λ2 = λ(0) =
a

a0

= 1 + α, (2.18)

where a0 is the capsule radius in the unstressed configuration. As shown by Lac &
Barthès-Biesel (2005), the relation between T (0) and α depends on the membrane
constitutive law (and thus on C, A or Ψ ). However it is independent of bending
resistance since bending moments are identically zero for isotropic swelling.

2.3. Boundary integral formulation

The boundary integral form of the Stokes equations is used. As shown in figure 1, the
external flow domain is bounded by the capsule membrane M , the channel wall W ,
a spherical entrance surface E centred on O with radius RE (RE � R), a planar exit
section S normal to Ox and located far inside the pore at x = L (L � R). The internal
flow domain is bounded by M . At time t = 0, the initially spherical, pre-inflated or
not, capsule is centred at x(M)(0) = −d (0 <d � RE) and flow is started with constant
flow rate Q. We then follow the motion of the capsule inside the pore, making sure
that at all times x(M) � L. We take the entrance pressure as reference (p = 0 on
E). Then, there is no contribution to the boundary integral from terms evaluated on
E where the velocity is O(Q/R2

E). On the exit surface S, Poiseuille flow conditions
prevail:

v(1)(x, t) = v∞(x) = 2
Q

πR2

[
1 −

( r

R

)2
]

ex, p = p∞(L) + �p, (2.19)

where �p is the additional pressure drop created by the capsule and p∞(L) is the
pressure that would exist in the absence of a particle.

The effect of the viscosity ratio µ(2)/µ(1) between the internal and external liquids
on the transient entrance flow has been studied by Diaz & Barthès-Biesel (2002).
Here we concentrate on the steady motion of the capsule inside the tube. When such
a steady state is reached, the internal liquid is at rest and its viscosity µ(2) has no
influence on capsule motion and deformation. Consequently, we choose µ(2) = µ(1) = µ

and thus obtain the simplified boundary integral where the double-layer term on the
capsule surface has disappeared (Pozrikidis 1992):

bv(x) =
1

8πµ

∫
M

J(x, y) · � f ( y)dA( y) +
1

8πµ

∫
W∪S

J(x, y) · f b( y)dA( y)

−
∫

S

v∞( y) · K(x, y) · n( y)dA( y), (2.20)

where f b( y) represents the force exerted by the boundaries W and S on the suspending
liquid and where parameter b takes values 1, 0, 1/2 when x is located on M, W, S,
respectively. The single- and double-layer kernels J and K are defined by

Jij =
δij

|x − y| +
(xi − yi)(xj − yj )

|x − y|3 , Kijk = − 3

4π

(xi − yi)(xj − yj )(xk − yk)

|x − y|5 . (2.21)

Integral (2.20) is further simplified by performing the integration analytically in the
azimuth direction. The surface integrals are then reduced to line integrals taken along
the intersection curves of surfaces M, W, S with a meridian plane.
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2.4. Main problem parameters

A dimensional analysis of the problem shows that the main parameters for the flow
and capsule properties are:

an equivalent capillary number that measures the ratio of viscous to elastic forces
ε =µQ/πR2Gs;

the size ratio between the capsule and the tube a/R (note that the pre-inflated
capsule radius is used);

the pre-stress measured by the pre-inflation ratio α;
the ratio of area dilation to shear moduli Ks/Gs;
the ratio of bending to shear moduli B =Bs/GsR

2.
In the following, we consider values of a/R ∈ [0.8, 1.0], corresponding to medium to
large capsules. The maximum capillary number is taken to be 0.6, a fairly large value
that is not easy to obtain experimentally. The pre-inflation ratio is at most 10%,
corresponding to quite high pre-swelling. Finally, as will be explained later, the ratio
B is taken as small as possible to prevent buckling without altering significantly the
deformed profile of the capsule.

3. Numerical procedure
We use the numerical procedure initially proposed by Quéguiner & Barthès-Biesel

(1997) and later improved by Diaz & Barthès-Biesel (2002) through the use of efficient
interpolation techniques to describe the geometry of the deforming boundaries. It
consists of following the motion of the capsule as it enters the pore and in tracking the
Lagrangian position of the membrane material points. The fluid domain boundaries
are tessellated into elements with collocation points, and interpolated by means of
cubic B-spline functions. At a given time t , the position of the membrane collocation
points is thus known. By comparing the deformed and initial positions, the principal
extension ratios, curvatures, bending moments and elastic tensions are computed from
(2.7), (2.8), (2.14) and one of the constitutive laws (2.9), (2.10) or (2.12). The load on
the membrane surface follows from (2.15) and (2.16). The force distribution f b on W

and the additional pressure drop �p on S are obtained from boundary conditions
(2.4) and (2.19) associated with the boundary integral (2.20) with x located alternately
on W and on S, respectively. The capsule membrane velocity is obtained from (2.20)
with x located on M . The position of the membrane material points is then updated
by means of (2.5).

Our objective is to obtain a steady deformation of the capsule inside the tube.
However, achieving this steady state may sometimes require fairly long times or
equivalently fairly long tube lengths. In order to limit the dimensions of the flow
domain, we switch to a reference system linked to the capsule and moving with it when
the particle is well inside the tube with a minimum axial coordinate larger than 4R.
This is possible because the flow disturbance created by the particle is O(|x − x(M)|−2).
More specifically, Quéguiner & Barthès-Biesel (1997) have shown that Poiseuille flow
profiles were recovered within 1% at distances from the front and rear of the capsule
of order R. We consider that steady state is reached when |∂T1max/∂t | < 10−2GsQ/πR3

and |∂�p/∂t | < 10−2GsQ/πR4 where T1max is the maximum elastic tension in the
membrane meridian. The entrance section E is located at RE =30R and the exit
section S at L =15R. The hyperbolic part is tessellated into 66 elements unequally
spaced with increasing density as the hyperbola apex is approached. The tube
part and exit section S are tessellated into 189 and 34 equally spaced elements,
respectively. The membrane meridian is tessellated into 60 or 120 equally spaced



Motion of a capsule in a cylindrical tube: effect of membrane pre-stress 165

elements on the initial inflated sphere, depending on the flow strength and resulting
deformation.

At time t = 0, the undeformed and pre-inflated capsule is centred at x(M) = −4R

and the flow is started. However, it is also possible to start with a deformed
capsule inside the tube and use the reference frame linked to the capsule centre.
In this case, the deformed shape is not necessarily in equilibrium with the imposed
flow conditions, and we run the programme until the capsule has attained a new
equilibrium, if any. The numerical scheme uses an explicit time integration procedure
and is thus numerically unstable unless the time step �t is very small. We found
that using �t = 3.2 × 10−4πR3/Q ensures numerical stability but leads to fairly long
computational times since the entrance process is quite slow. With those numerical
parameters Diaz & Barthès-Biesel (2002) show that steady values of pressure drop
and capsule velocity can be obtained with a precision of about 0.1%. A further check
on the precision of the numerical model can be done by monitoring the capsule
volume. We have in general a volume change well under 1% even after 240 000 time
steps and that is an indication of the numerical precision of the membrane partition
used.

All the results presented here satisfy the steady-state criteria. At steady state, there
is a significant viscous pressure drop in the sheared liquid film between the capsule
and the wall. Since the internal liquid is motionless, the pressure inside the capsule
is uniform. Consequently, from equation (2.16), we can expect the meridian rear
curvature Cr (at r =0) to always be smaller than the meridian front curvature Cf

(at r =0). This leads to parachute shapes (Cr < 0) or to slug shapes (Cr > 0) with the
back blunter than the front.

4. Motion of a capsule with an Sk membrane
As an example, we consider a capsule with a membrane that obeys constitutive law

(2.10) with Ks = 3Gs (i.e. C = 1). We study the effect of pre-swelling α, flow strength
as measured by ε and size ratio a/R on the capsule steady motion. The effect of
C and of different membrane laws will be studied later. As in Lac & Barthès-Biesel
(2005), three inflation ratios α =0%, 2.5% and 10% are considered. The value 2.5%
corresponds to a moderate pre-inflation whereas 10% is a large pre-inflation that
leads to high pre-stress and significant apparent hardening of the membrane.

The deformed profiles have a complex shape that is not easy to quantify. Risso et al.
(2006) have introduced different parameters that can be measured on experimental
profiles: the maximum Lx and minimum Lf r axial lengths, the maximum transversal
length Ly , the deformed meridian perimeter Lm, the front Cf and rear Cr curvatures
on the revolution axis (figure 2). We thus compute these geometrical parameters as
functions of the problem parameters ε, a/R, α. These results are useful for the analysis
of experimental data, as will be illustrated later.

4.1. Effect of bending resistance

When the capsule is not pre-stressed, the membrane is subjected to negative elastic
tensions along a meridian, especially when the curvature at the back changes sign.
This occurs during the transient stage when the capsule enters the pore. In order
to prevent buckling, Diaz & Barthès-Biesel (2002) found it necessary to introduce a
small bending resistance of the membrane. The non-dimensional bending modulus B

was chosen large enough to prevent buckling and allow the capsule to reach a steady
shape. However, it was also taken as small as possible to prevent any significant
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Figure 2. Definition of parameters quantifying capsule deformation.

 0

 1

–2 –1  0 1
x/R

2 3 4

r

(a) (b) (c)

R

Figure 3. Effect of pre-inflation and flow rate on capsule deformed half-profiles (a/R =0.8).
(a) ε = 0.012, (b) ε = 0.06, (c) ε = 0.24. Dotted line: α = 0%; continuous line: α = 2.5%;
dash-dot line: α = 10%.

modification of the final capsule shape or of the additional pressure drop. Diaz &
Barthès-Biesel (2002) found that the value B = 1 × 10−5 served the above purposes
for the neo-Hookean membrane they studied.

Owing to its strain-hardening property, an Sk membrane does not buckle for α = 0
and flow strengths as large as ε =0.6, so that a steady shape can be obtained. We
find that the profiles computed with B =0 and B = 1 × 10−5 are superimposed within
graphical precision, whereas a much larger value B =1 × 10−3 corresponding to much
larger membrane bending resistance, leads to a significantly different capsule shape.
When the capsule is pre-inflated, the elastic pre-stress may prevent the appearance of
negative tensions in the membrane and thus remove the tendency towards buckling
(Lac & Barthès-Biesel 2005). For moderate pre-inflation (α = 2.5%), we find again
that the profiles obtained for B = 0 and B =1 × 10−5 superimpose. For large pre-
inflation (α = 10%), B has an effect only at very high flow rates but for ε = 0.09 the
profiles obtained with B = 0, B = 1 × 10−5 and B =1 × 10−3 superimpose, because the
large pre-stress prevents any significant deformation.

It was not our purpose to study the effect of bending rigidity of the membrane,
but in order to have a meaningful comparison of α = 0 and α > 0 results for different
membrane constitutive laws, it was decided to use the same small value of ratio of
bending to shear moduli B = 1 × 10−5 even for pre-stressed capsules. Occasionally
when steady state was reached, the value of B was changed to B = 0 and we verified
that the new steady deformed profile was not significantly modified.

4.2. Effect of α and ε (a/R = 0.8)

We now study in detail the combined effects of pre-stress and flow strength for
medium-sized capsules such that a/R = 0.8. Steady deformed half-profiles are shown
in figure 3 as a function of α for three typical values of ε. For small flow strength
(e.g. ε = 0.012), the capsule with no pre-stress has a parachute shape with negative
rear curvature, whereas a small amount of pre-stress (e.g. α � 2.5%) prevents the
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Figure 4. Effect of α and ε on the different parameters measuring steady capsule deformation
(defined in figure 2), a/R = 0.8. In (e), RC represents the non-dimensional curvatures RCf and
RCr evaluated at the front and the rear respectively. Same legend for α as in figure 3.

curvature inversion. As ε increases to 0.06, the 2.5% pre-inflated capsule exhibits the
beginning of a curvature inversion at the rear (figure 3b), whereas for α = 10%, the
internal pressure is still large enough to prevent the appearance of the parachute.
For high flow strength (ε = 0.24), the difference between pre-stressed (α = 2.5%) and
unstressed (α = 0) capsules has almost disappeared (figure 3c). The 10% pre-inflated
capsule also begins to undergo the curvature inversion at the rear.

In figure 4, we show the variations with ε of Lx, Ly, Lf r, Cf , Cr and Lm for the
three values of inflation ratio α. We note immediately that the transversal length Ly
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a/R α = 0% α = 2.5% α = 5% α = 10%

0.8 ≈ 0 0.043 0.1 0.21
0.9 0.009 0.048 0.096 0.19
1.0 0.02 0.061 0.105 0.19

Table 1. Critical values εc for which the rear curvature changes sign. The case α = 5% is
added to facilitate interpolation of data.

and the front curvature Cf do not vary much with either ε or pre-stress (figure 4b, e).
It follows that these parameters are not appropriate to evaluate capsule mechanical
properties. For moderate or no pre-inflation, the axial length Lx first decreases with
ε, while the radial length Ly increases slightly. This corresponds to a small axial
compression of the capsule due to the adverse pressure gradient. Then Lx increases
continuously with ε, while Ly decreases slightly. When pre-inflation is large (α = 10%),
the high internal pressure prevents the initial axial compression of the capsule. Thus
Lx is a monotonically increasing function of ε as is apparent in figure 4(a). Note
though that Lx is measured at different locations as the shape evolves: on the tube
axis for slug shapes or on the rim for parachute shapes. As a consequence, for a
given value of ε, when α (or equivalently membrane apparent rigidity) increases, Lx

either increases (ε < 0, 06), decreases and then increases (0.06 <ε < 0.15), or decreases
(ε > 0.15). It follows that the measurement of Lx only is not enough to characterize
capsule mechanics.

The useful parameters to study the shape evolution from slug to parachute are
Lf r , the difference Lx − Lf r or the rear curvature Cr . As shown in figure 4(c), Lf r

follows the same trend as Lx when ε increases, but becomes smaller than Lx when the
parachute is formed. The change in curvature sign at the rear occurs when Lx − Lf r

becomes positive for a critical value εc of capillary number that is fairly sensitive to
pre-inflation (figure 4d, e). Consequently measuring the evolution of Lx − Lf r or of
Cr with ε may yield the value of εc from which pre-inflation can be estimated, as
shown in table 1. As ε increases, deformation and thus the capsule meridian perimeter
Lm increases (figure 4f ). However, Lm is not very sensitive to pre-inflation. Indeed
for a given ε, varying α from 0 to 10% leads to a global decrease of Lm of order
10%. The value of Lm/2πa is equal to the average of the extension ratio λ1 along
a meridian curve. However, the maximum extension ratio in the meridian λ1max is
significantly larger than Lm/2πa and fairly insensitive to α (figure 4f ). This is because
the maximum extension occurs near the nose of the capsule where the local deformed
shape is also insensitive to α as can be seen from the profiles in figure 3 and also
from the value of the front curvature in figure 4(e). In conclusion, capsule dynamics
are defined by the variation with ε and α of two sets of parameters, Lx or Lm, that
measure the overall membrane extension, and by Lx − Lf r or Cr that measure the
parachute depth and lead to an estimate of pre-inflation through εc.

4.3. Effect of capsule size

It is now of interest to study the combined effects of capsule size and pre-inflation as
both phenomena influence the deformed shape of the particle. We thus consider two
other size ratios a/R = 0.9 and a/R = 1.0. Larger values of a/R are usually difficult
to achieve experimentally without plugging. The deformed profiles are shown as a
function of pre-inflation and flow strength in figures 5 and 6. In the case a/R = 1.0
and weak flow (ε = 0.012), all capsules are convex even in the absence of pre-stress
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Figure 5. Effect of pre-inflation and flow rate on capsule deformation (a/R = 0.9).
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(figure 6a). For medium flow (ε = 0.06) and a/R � 0.9, only the capsule with no
pre-stress exhibits a concave back (figures 5b and 6b). As we increase ε to 0.24,
the 2.5% pre-inflated capsule also takes a parachute shape and its deformed profile
becomes very similar to that of the unstressed capsule (figures 5c and 6c). For ε = 0.24,
the 10% pre-inflated capsules both have a slightly negative curvature at the back
(Cr ≈ −0.2/R) although it is barely detectable on figures 5(c) and 6(c).

The combined effects of size ratio, pre-inflation and flow strength are summarized
in figure 7. For low flow strength, capsules that are smaller than the tube without
or with small pre-stress undergo a slight initial axial compression as shown by the
initial decrease of Lx/2R and of Lf r (figure 7a, b). This initial compression does not
occur for large capsules that are constrained by geometry to take a slug shape. As ε

increases, Lx seems to increase continuously, while the radial length Ly (not shown)
stabilizes to a plateau value that is not very sensitive to either size or pre-inflation. The
radial length Lf r becomes smaller than Lx when the capsule back becomes concave
and then also reaches a plateau value for high flow strength. This phenomenon,
coupled with the continuous increase of Lx , shows that the parachute deepens when
ε increases as shown by the evolution of Lx − Lf r with ε (figure 7c). The deformed
perimeter (now scaled with tube radius to show size effects) Lm/2πR increases with
size and flow strength but decreases with pre-inflation, as expected (figure 7d ). In all
cases, pre-stress decreases deformation, but its relative effect fades out as ε increases.

The analysis of the effect of size and pre-inflation on the front and rear curvature
of the deformed profiles is also interesting. In figure 8, the front curvature Cf is
shown only for α = 2.5% because pre-inflation does not influence Cf much. We find
that Cf varies slowly with ε, as pointed out earlier. The front curvature is probably
the easiest one to measure, but unfortunately it is not very sensitive to the main flow
parameters. The rear curvature Cr however, is sensitive to size ratio and pre-inflation
at low capillary numbers except for large pre-inflation (α = 10%) where Cr does not
depend much on size for any value of ε (figure 8). For low pre-inflation (α � 2.5%),
the back parachute curvature becomes independent of size for high flow strength
(ε � 0.2).
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Figure 7. Effect of α and ε on the different parameters measuring steady capsule deformation
for three size ratios a/R = 0.8, 0.9, 1.0. Same legend for α as in figure 3. For ε > 0.3 and a
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The critical value εc of capillary number for which the shape evolves from slug to
parachute is determined by the change of sign of Cr or by the first non-zero value of
Lx − Lf r . The value of εc is shown in table 1 as a function of size ratio and inflation.
It appears that for a given size ratio, εc is quite sensitive to pre-inflation. This is an
important result for experiment analysis; the data in table 1 can be interpolated and
allow the evaluation of the pre-inflation of a capsule of known size from the value
of flow rate at which the back curvature changes sign. However, the value of εc is
fairly independent of capsule size for a given pre-inflation ratio. This results from a
complicated nonlinear interplay of pressure drop in the lubrication film and additional
internal pressure due to deformation. In figure 9 we compare the deformed profiles at
ε =0.06 and α = 2.5% of the three capsules a/R =0.8, 0.9 and 1.0 and note that the
length of the lubrication film around the capsule increases as a/R increases while the
thickness does not change much. The viscous pressure drop between the back and
the front of the capsule thus increases with a/R and this promotes the appearance of a
negative curvature at the back. However, the deformation of the capsule increases with
a/R (as indicated by the values of Lm shown in figure 7d ). Consequently the elastic
tensions and thus the internal pressure also increase and this opposes the formation
of the parachute. Since the capsule undergoes large deformations the interplay of the
two phenomena is nonlinear and difficult to predict.
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0.9, 1.0. The back curvature is almost the same for the three profiles although their size and
deformation differ significantly.

4.4. Membrane tensions and additional pressure drop

One of the model’s advantages is the evaluation of not measurable quantities such as
the elastic tensions in the membrane. The tension T1 along the meridian is larger than
the tension T2 along parallel curves, except on the tube axis where the two principal
tensions are equal. It is of particular interest to determine the maximum of the tension
as this information is relevant for break-up. The analysis of tension distribution along
a meridian curve shows that T1 reaches a maximum value slightly before the front tip
of the capsule in the upstream part of the lubrication film between the membrane and
the wall. The value of the front elastic tension T1f on the axis is a good measure of the
overall tension level in the membrane even though it is somewhat smaller (by at most
8%) than the maximum tension in the membrane. The rear tension T1r on the axis is
about 10 times smaller than T1f . It first decreases with ε, because the membrane is
first compressed before the curvature change occurs. This compression was the main
reason why it was found necessary to add a bending resistance to the membrane for
α = 0. For α = 2.5%, T1r decreases, but remains positive owing to pre-stress. The rear
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tension is minimum when the rear curvature Cr is zero. It then increases again as
Cr becomes negative, because the parachute is formed and the rear of the capsule
is again subjected to stretching forces. We find of course that the minimum of T1r

occurs near ε = εc.
The front and rear axial values of the elastic tensions are shown in figure 10

for different values of pre-inflation and all three size ratios. We find that the front
tension T1f starts from the initial pre-stress value but no longer depends on this initial
pre-stress value for large ε. The front tension increases significantly with size ratio;
for ε � 0.3, T1f is roughy doubled when a/R increases from 0.8 to 1.0. The value of
tension at the back is fairly insensitive to pre-stress or size ratio once the parachute
is formed (ε > 0.4).

The presence of a capsule in the ube creates an additional pressure drop �p,
that increases with size ratio and flow strength for a given capsule (figure 11). The
influence of α is mild at any flow strength, but the influence of size is quite strong
since as a/R increases by 25% from 0.8 to 1.0, the additional pressure drop is roughly
doubled for any ε. The pressure drop occurs mainly in the viscous film that surrounds
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Figure 12. Effect of the capsule resistance to area dilation as measured by C for
ε = 0.3, a/R = 0.8. Same legend for α as in figure 3.

the capsule. The length Lx of this film increases with ε, while the width Ly remains
almost constant. Thus the evolution of �p with ε follows that of Lx .

4.5. Effect of the ratio Ks/Gs of area dilation to shear in the membrane law

We now study the effect of the value of parameter C in the membrane law (2.10).
The ratio of area dilation to shear modulus Ks/Gs is directly related to C as shown
in equation (2.11). When C increases, for a fixed value of ε (equivalently of Gs) the
membrane resistance to compression increases and its deformability decreases. As an
illustration, we present results for a/R =0.8 and for ε = 0.3, because the influence of
C is mainly for large membrane deformation. The effect of C and α on the capsule
length Lx and on the depth of the parachute Lx − Lf r is shown in figure 12. The
global effect of increasing C or Ks/Gs is to decrease the capsule extension and the
depth of the parachute. The local increase of Lx that occurs for α =2.5% and 10% is
due to the change of shape from slug to parachute, as was already noted in § 4.2. We
observe also that this shape transition occurs for larger values of C as α decreases
(figure 12b). We may thus deduce that εc =0.3 for the three sets of parameter values
(α =0%; C ≈ 10), (α = 2.5%; C ≈ 7) or (α = 10%; C ≈ 2).

This short study proves that the area dilation to shear modulus ratio is also
an important parameter that influences capsule deformation. The numerical model
gives the elastic tension distribution in the membrane. We find that the principal
deformation mode is indeed area dilation in the front and rear parts of the capsule,
but that shear and area dilation deformations are of the same order of magnitude in
the membrane part located in the film region near the wall.

5. Comparison with experimental results
Risso et al. (2006) studied experimentally the motion and deformation of capsules

flowing in a cylindrical tube. The flow rate Q was imposed by infusion syringe pumps.
The capsules were nearly spherical and their radius was measured by means of a
video camera. For some reference capsules, the membrane area dilation modulus Ks

was determined by means of compression experiments, assuming area dilation was the
principal deformation mode. When such a direct evaluation of Ks was not available,
an estimate was obtained by comparing the deformed profile to that of a reference
capsule with the same size and assuming that the same deformation was obtained for
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Figure 13. Comparison between experimental and numerical deformed profiles for a/R =
0.77. Thin dotted line: α =0, continuous line: α = 3%, thick dotted line: experimental profile
of Risso et al. (2006).

the same value of capillary number. For a given flow rate, Risso et al. (2006) could thus
compute a capillary number Ca = εGs/Ks , defined by an expression similar to that for
ε where Gs was replaced by Ks . They also found that the ratio Ks/Gs lay between 1
and 3, but that the exact value had no influence on the results. When the back of the
capsule was concave, owing to the formation of the parachute shape, the projection
of the parachute edge was deleted manually from the picture, so that the resul-
ting digitalized profiles approach the shape of a meridian curve of the deformed
capsule. Thus, for representative capsules, they recorded the deformed profile and
measured the lengths Lx , Ly , Lf r , Lm and the curvatures Cf and Cr as functions
of capillary number. The digitalized experimental profiles of figure 7 in Risso et al.
(2006) were kindly provided to us by F. Risso. From each deformed profile of a given
experimental capsule, we calculate the volume and use the mean of the calculated
volumes to determine the radius a of the initial spherical capsule. With this procedure,
we find slightly larger values of a than the ones given by Risso et al. (2006).

In principle, the deformed shape of the capsule depends on many parameters:
membrane constitutive law and Ks/Gs , size ratio a/R, pre-inflation α and flow
strength measured by either Ca or ε. It is thus difficult to determine a unique set
of values for these parameters that will characterize the capsule. We thus first try to
match the experimental data with numerical profiles computed for a capsule enclosed
by an Sk membrane with C = 1, and then explore other values of C and other
membrane constitutive laws.

5.1. Comparison with a capsule enclosed by an Sk membrane (C =1, Ks/Gs =3)

The experimental results are now compared to the numerical results presented in § 4
for a capsule with a membrane obeying the Sk constitutive law (2.10) with C =1,
thus Ks/Gs = 3 and Ca = ε/3.

In figures 13 and 14, we show experimental deformed profiles for size ratios
a/R = 0.77 and 0.83 (a/R = 0.75 and 0.81, respectively in Risso et al. 2006),
corresponding to capsules that are smaller than the tube and can thus easily flow
and deform. Three values of capillary number are considered in each case, for small,
medium and high experimental flow strengths. We note that the curvature inversion
at the rear of the experimental capsules occurs for values of capillary number larger
than ε = 0.06, but probably not much larger since the curvature is already very small
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for ε = 0.06. We then interpolate the results given in table 1 for a/R = 0.8 and find
α ≈ 3%.

Numerical profiles were then computed for the same values of a/R and ε, with
α = 0% (no pre-stress) and α = 3%. We note that for small capillary numbers, the
numerical profile with no pre-stress has a concave back whereas the experimental
profile is convex (figures 13 and 14). However, when a pre-stress corresponding to
α = 3% is included in the numerical model, the fit between the experimental and
numerical profiles is much better, as can be seen in figures 13 and 14. For a/R = 0.83
at very large flow strength (ε = 0.375), the back curvature of the experimental profile
is larger than the one predicted numerically. The deformed profiles of a large capsule
(a/R = 0.95, corresponding to a/R = 0.94 in Risso et al. 2006) are shown in figure 15.
The capillary number is not high enough to create a parachute profile but an initially
unstressed capsule exhibits a curvature inversion at the back even at these low values
of ε. We select the same value α = 3% as for the smaller capsules and find that there
is a very good fit between the numerical pre-inflated profiles and the experimental
ones (figure 15).

In view of this profile comparison, we may deduce that the experimental capsules
were probably subjected to an initial pre-stress due to osmotic effects caused by
partial dissolution of the membrane material during storage. This possibility was
also considered by Risso et al. (2006), who estimated that the initial pre-inflation
was of order 4.5%. Risso et al. (2006) also conducted some experiments on capsules
that had been specifically pre-inflated by immersion in suspensions with different
salt concentrations. Estimating the initial pre-inflation ratio to be 2.5%, 4.5% and
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7.5%, they subjected capsules with size a/R = 0.75 to increasing flow strengths up to
ε =0.09. They did not find any significant influence of α on either the front or back
curvature of the capsules. However, this is not surprising because for such low flow
strength, the front curvature does not depend on α as can be surmized from figure 4e.
Furthermore, for ε � 0.09, the back of the capsule has either a positive or slightly
negative curvature (see figure 3). Since it is in fact the projection of the capsule that
is observed experimentally, a slightly hollow back will be hidden by the edge of the
parachute and will be difficult to detect. It is only when the parachute is well formed
with Cr = −(0.25 ∼ 0.5)/R that the parachute can be detected without ambiguity.
Here, we find that for the Sk law and C = 1, a pre-inflation of order α = 3% is
enough to correlate the experimental profiles for different capillary numbers and size
ratios. If we were to use a larger value of α, the absolute value of the back curvature
would decrease accordingly (figure 8), and thus the fit with the experimental profile
would worsen.

For a/R = 0.83 and high flow strength (ε =0.375) there is a discrepancy between
experimental and numerical profiles that cannot be attributed to experimental
uncertainty but might be due to plastic deformation or to other nonlinear elastic
phenomena not accounted for in the simple numerical model we use. It should be
noted that the corresponding experimental capsule had the lowest value of Ks and
had been stored in saline solution for over 10 months. Such long storage results in an
alteration of the molecular structure of the membrane and a significant decrease of
the membrane area dilation modulus compared to capsules freshly prepared (Risso &
Carin 2004).

5.2. Effect of membrane constitutive law (Ks/Gs = 3)

So far, we have compared the experimental results to those computed for a capsule
with a membrane obeying the Sk law with C =1. The question that arises now is
whether other membrane constitutive laws (such as (2.9) or (2.12)) would fit the
experimental results equally well, or better.

As an example, we consider the case a/R = 0.83 (the only one for which highly
deformed shapes were obtained), assume a pre-inflation α =3%, and compare the
profiles of capsules enclosed by membranes obeying either one of the laws MR (Ψ = 1
or 0), Sk (C = 1) and ES (A= 3), that all correspond to the same small deformation
behaviour with Ks =3Gs (Ca = ε/3). As was noted by Quéguiner & Barthès-Biesel
(1997) and by Diaz & Barthès-Biesel (2002), a capsule with a neo-Hookean membrane
(i.e. MR with Ψ = 1) undergoes continuous elongation and does not reach a steady
state when the capillary number exceeds a critical value. Here, even with a 3%
pre-inflation, we observe the same phenomenon for a capsule with a neo-Hookean
membrane and for flow strengths ε � 0.24. We can thus conclude immediately that
a neo-Hookean constitutive law is not appropriate to model the behaviour of the
alginate membrane and thus confirm the conclusions of the compression experiments
(Carin et al. 2003; Risso & Carin 2004; Rachik et al. 2006). However, steady deformed
shapes could be obtained with the extreme MR law corresponding to Ψ = 0.

The steady numerical deformed profiles are compared with the experimental
ones in figure 16(a, b) for two values of capillary number (Ca = 0.08, ε =0.24) and
(Ca = 0.125, ε = 0.375). It appears clearly that the Sk law gives a much better fit of
the numerical profile than the MR (Ψ = 0) or ES laws. These last two laws predict
a larger deformation than is actually observed: the overall extension Lx or the axial
length Lf r are both over-estimated. This is probably due to the strain-softening
properties of the MR and ES laws compared to the strain-hardening feature of the
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Figure 16. Effect of membrane constitutive law on capsule deformed profile for a/R = 0.83,
α = 3% and Ks/Gs = 3. (a) Ca = 0.08, ε = 0.24. (b) Ca = 0.125, ε =0.375.

Sk law. The discrepancy between the MR or ES profiles and the experimental ones
increases with capillary number. Unless we were to use unrealistically large values of
α, increasing pre-inflation would not change these conclusions significantly because
we are in the large deformation range where the pre-stress influence has faded out.

5.3. Effect of membrane law parameters

We now study the effect of the value of the material coefficients in the constitutive laws.
Changing C or A modifies the value of the ratio of area dilation to shear modulus
Ks/Gs . We consider again the case a/R = 0.83 and keep the same value α =3%. We
take the experimental value of Ca as given and compute the corresponding value of
ε, using the definition of Ks/Gs given in (2.11) and (2.13). Recall that Risso et al.
(2006) estimated the ratio Ks/Gs between 1 and 3, corresponding to C ∈ [0, 1] and
A ∈ [1, 3].
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Figure 17. Effect of the parameters of the Sk or ES membrane constitutive law on capsule
deformed profile for a/R =0.83, α = 3% or 7.5%.

When we decrease C from 1, we decrease the strain-hardening feature of the Sk
law but also the shear capillary number ε. It follows that the profiles obtained
for C = 0 (not shown) are not deformed enough, while those obtained for C = 0.5
slightly underestimate the experimental deformation for Ca = 0.08 but give a fair
fit for Ca = 0.125, as shown in figure 17. In the case of an ES membrane law with
A= 1, the deformation is also slightly underestimated for Ca =0.08 with values of
Lx and Lf r smaller than the experimental ones. The profile obtained for Ca = 0.125
overestimates Lx and exhibits high curvature on the parachute rim that is not very
realistic compared to the experimental profiles (figure 17). Furthermore, for small flow
strength Ca = 0.02, the experimental profile has a convex back, whereas the numerical
profiles both have concave backs with a deeper parachute for ES (A= 1) than for Sk
(C = 0.5). It seems then that these two laws do not fit well the experimental data at
low Ca, unless of course we increase pre-inflation. For example for Ca = 0.02, a value
α = 7.5% leads to a convex back for the capsule with an ES (A= 1) membrane. But as
shown in figure 17, the computed deformed shape does not fit well the experimental
one for Ca = 0.02. Besides, such a high value of α may not be very realistic as the
capsules were stored in a supposedly isotonic medium and any pre-inflation, being
due to partial membrane dissolution, should remain moderate.

Finally, we may wonder if increasing Ks/Gs would improve the fit between
numerical and experimental results. It turns out that this is not the case; for an
Sk membrane with C = 2 (thus ε = 5Ca), we find that for a set value of Ca, Lx , Lf r

and Cr all increase with C, corresponding to more elongated profiles with less back
concavity.

By looking at the profile comparison in figure 17, one could conclude that if the
pre-inflation is kept at the 3% level, then only the Sk (C =0.5) law gives a reasonable
fit with the experimental results over the whole range of flow strength. In order
to confirm this conclusion, we must validate it for another size ratio. When we
consider the case a/R = 0.95 for the largest available value of Ca, and compare the
experimental profile with those computed for these two laws in figure 18, we note
again that the ES law leads to parachute shapes that are not realistic.

From the comparison between the numerical and experimental profiles of flowing
capsules, we can draw some conclusions:

(i) the capsule membrane is not well represented by an MR law for any value of
the parameter Ψ ;
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Figure 18. Effect of the parameters of the Sk or ES membrane constitutive law on capsule
deformed profile for a/R = 0.95, α = 3% and Ca = 0.02.

(ii) an ES constitutive law with A= 3 ∼ 1 does not reproduce well the experimental
data for any flow strength and for two size ratios, when the pre-inflation is 3%;

(iii) an Sk constitutive law with C somewhere between 1 and 0.5 and a 3%
pre-inflation gives a good fit with the data for all three capsule sizes and all flow
strengths.

This result is useful, because it confirms that one single measurement (e.g.
compression between two plates) is not enough to determine the constitutive behaviour
of the elastic membrane. The MR or ES laws that could be used to analyse the
compression data cannot fit the tube flow data well because the deformation and
stress fields are different in the two cases. The membrane of the experimental capsules
was made of alginate covalently linked to a network of human serum albumin. It is
quite possible that under high strain, the albumin network resists deformation and
confers strain-hardening properties on the membrane. The fact that the Sk law fits the
experimental profiles is probably due to its capacity to reproduce this strain-hardening
feature.

6. Conclusion
The flow of a capsule in a cylindrical pore results from a complicated fluid–

structure coupling. The geometrical restrictions imposed by the tube wall lead to large
deformations that are controlled by the membrane constitutive law. Correspondingly,
strain-hardening or strain-softening laws eventually produce very different capsule
shapes for a given flow strength. If the membrane elasticity can be evaluated by
means of an independent technique (e.g. compression), the value of Ks or Gs is
known and the capillary number can be measured. The model then in principle
allows a determination, from profile analysis, of possible constitutive laws for the
membrane as well as an associated inflation ratio α. Note though, that the analysis of
any other independent technique is also constitutive-law dependent if it involves large
deformation. Here, for the capsules with a thin alginate membrane studied by Risso
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et al. (2006), we find that an Sk law with Ks/Gs = 3–2 can approximately represent
the experimental data, provided a pre-swelling of 3% is accounted for.

In many situations, it is only possible to obtain one measurement of capsule
deformability. Such is the case for very small capsules with micron-size diameters for
which compression experiments are very difficult to perform. However, it is feasible
to flow a micro-capsule suspension in a capillary tube, where the particle relative size,
deformation and velocity can be measured. The easiest way to analyse the data is then
first to assume a membrane constitutive law with a given value of Ks/Gs (the choice
of law can be guided by the membrane physio-chemical properties). The geometry of
the deformed capsule (e.g. Lx, Lf r ) leads to a value of capillary number from which
Gs can be inferred. Then, the eventual pre-inflation may be determined by monitoring
the rear curvature change of a flowing capsule and measuring the value of capillary
number εc for which it occurs. For a given size ratio a/R and membrane law, εc

depends on pre-inflation as indicated in table 1. The validity of the choice of the
constitutive law can be tested with different size capsules and different flow strengths.
The constitutive law may not be unique, but can usefully allow the determination of
some capsule mechanical properties for comparison purposes. Other effects can also
be studied with this model, such as the role of the bending resistance or of other
types of laws.
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